

Thermal Transfer Ribbon Technical Data Sheet

MP Wax

Product Description

Specially formulated to print at a wide range of energy and speed settings, this wax provides an economical solution for everyday thermal transfer printing. It incorporates proven backcoat technology to protect your printhead. This wax product features a blend of ingredients that are combined in an ink that prints dark images and crisp, clean barcodes.

Recommended Applications

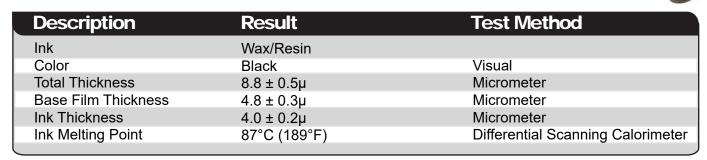
INVENTORY

Recommended Substrates

Coated/uncoated paper and tags

Performance Characteristics

- Halogen-Free
- Ideal for printing on coated and uncoated paper labels and tags
- Prints dark images and crisp, clean barcodes
- Drop-in ready, elminating the need for printer adjustments
- · Developed with high-quality resins
- High levels of durability against scratch and smudge


NetWAV, Inc. 4007 Ave D, Suite B Austin, TX 78751

Thermal Transfer Ribbon Technical Data Sheet

MP Wax

Ribbon Properties

Durability of Printed Image

Label Stock: Polypropylene Print Speed: 6 IPS

Description	Result	Test Method
Print Density	> 1.70	Densitometer
Smudge Resistance	Α*	Colorfastness Tester - 50 Cycles @ 500 Grams with Cotton Cloth
Scratch Resistance	A*	Colorfastness Tester - 20 Cycles @ 200 Grams with Stainless Steel Pointed Tip

^{*}American National Standard Institute (ANSI) Grade Levels A, B, C, D, and F, where A is excellent, B is above average, C is average, D is below average, and F is poor.

Conversion Chart

Millimeters (mm) to Inches = mm ÷ 25.4	Inches to Millimeters (mm) = Inches ÷ 0.03937
Meters (m) to Feet (ft) = $m \div 0.3048$	Feet (ft) to Meters (m) = Feet ÷ 3.2808
C° to $F^{\circ} = (1.8 \times C^{\circ}) + 32 = F^{\circ}$	F° to $C^{\circ} = (F^{\circ} \div 1.8) - 17.77$
Thousand square inches (MSI) to m ² = MSI X 0.645	$MSI = m^2 \div 0.645$

The information on this data sheet was obtained in our laboratories. Measured values may vary slightly when tested in a different environment. Information contained within this document is subject to change without notification.

NetWAV, Inc. 4007 Ave D, Suite B Austin, TX 78751